

Theory of Computation

For

Computer Science

&

Information Technology

By

www.thegateacademy.com

✆080-40611000

http://www.thegateacademy.com/

Syllabus

info@thegateacademy.com ©Copyright reserved. Web:www.thegateacademy.com

Syllabus for Theory of Computation

Regular Expressions and Finite Automata, Context-Free Grammar’s and Push-Down Automata,

Regular and Context-Free Languages, Pumping Lemma, Turing Machines and Undecidability.

Previous Year GATE Papers and Analysis

GATE Papers with answer key

Subject wise Weightage Analysis

thegateacademy.com/gate-papers

thegateacademy.com/gate-syllabus

http://www.thegateacademy.com/

 Contents

info@thegateacademy.com ©Copyright reserved. Web:www.thegateacademy.com i

Contents

 Chapters Page No.

#1. Introduction/Preliminaries 1 – 3

 Introduction 1

 Relations 2 – 3

#2. Finite Automata 4 – 16

 Finite Automata 4 – 10

 Construction of DFA from NFA (Sub Set Construction) 10 – 11

 Epsilon(∈)-Closures 12 – 13

 Eliminating ∈-Transitions (Construction of DFA from ∈-NFA) 14 – 16

#3. Regular Expression 17 – 50

 Definitions 17 – 18

 Languages Associated with Regular Expressions 18 – 19

 Algebraic Laws for Regular Expressions 19 – 20

 Converting Regular Expression to Automata (∈-NFA) 20 – 22

 Construction of Regular Expression from Finite Automata 22 – 26

 Ordering the Elimination of States 26 – 27

 Finite Automata with Output 27 – 30

 Regular Grammar 31 – 40

 Myhill-Nerode Theorem 40 – 42

 Pumping Lemma for Regular Languages 42 – 47

 Finding (in) Distinguishable States 47 – 50

#4. Context Free Grammar 51 – 84

 Introduction 51 – 53

 Context Free Language 53 – 55

 Leftmost and Rightmost Derivations Ambiguity 55 – 56

 Simplification of Context Free Grammar 56 – 57

 Elimination of Useless Symbols 57 – 61

 Normal Forms 61 – 66

 Pushdown Automata 66 – 67

 Definition of PDA 67 – 68

 Non Deterministic Finite Automata (NPDA) 68 – 74

 Properties of Context Free Language 74 – 77

http://www.thegateacademy.com/

 Contents

info@thegateacademy.com ©Copyright reserved. Web:www.thegateacademy.com ii

 Decision Algorithms for CFL’s 77 – 79

 Non-Context Free Language 79 – 81

 Pumping Lemma for CFL’s 81 – 83

 Membership Algorithm for Context-Free Grammar 83 – 84

#5. Turing Machines 85 – 134

 Introduction 85 – 88

 Modification of Turing Machine 88 – 91

 Two-Pushdown Stack Machine 91 – 92

 Counter Machine 92 – 94

 Multiple Tracks 94 – 101

 Universal Turing Machine 101 – 102

 Context Sensitive Grammar 102 – 104

 Linear Bounded Automata 104

 Hierarchy of Formal Languages (Chomsky Hierarchy) 104 – 105

 Undecidability 105 – 106

 Universal Language 106 – 112

 The Classes P & NP 112 – 115

Reference Books 116

http://www.thegateacademy.com/

info@thegateacademy.com ©Copyright reserved. Web:www.thegateacademy.com 1

"Yesterday I dared to struggle. Today I dare to win."

 …..Bernadette Devlin

Introduction/Preliminaries

Learning Objectives
After reading this chapter, you will know:

1. Relations

Introduction
String: A string is a finite sequence of symbols put together.

E.g. ‘bbac’ the length of this string is '4'.

Note: The length of empty string denoted by ∈, is the string consisting of zero symbols.

Thus |∈| = 0.

Alphabet: An alphabet is a finite set of symbols.

E.g.: {a, b, 0, 1, B}

Formal language: A formal language is a set of strings made up of symbols taken from some

alphabet.

E.g.: The language consisting of all strings formed by the alphabet {0, 1}

Note:

1. The empty set, ϕ, is a formal language. The cardinality (size) of this language is zero.

2. The set consisting of empty string, {ϕ} is a formal language. The cardinality (size) of this

language is one.

Set: A set is a collection of objects (members of the set) without repetition.

i. Finite Set: A set which contains finite number of elements is said to be finite set.

E.g.: {1, 2, 3, 4}

ii. Countably Infinite Set: Sets that can be placed in one-to-one correspondence with the integers

are said to be countably infinite or countable or denumerable.

E.g.: The set ∈ ∗ of the finite-length strings from an alphabet ∈ are countably infinite, (if ∈: {0, 1}

Then ∈∗: {0, 01, 1, 10, 011.....} i.e., all possible strings with ‘0’ and'1')

iii. Uncountable Set: Sets that can't be placed in one-to-one correspondence with the integers are

said to be uncountable sets.

E.g.: The set of real numbers.

C
H

A
P

T
E

R

1

 1

http://www.thegateacademy.com/

 Introduction/Preliminaries

info@thegateacademy.com ©Copyright reserved. Web:www.thegateacademy.com 2

Relations
A (binary) relation is a set of ordered tuples. The first component of each tuple is chosen from a set

called the domain and the second component of each pair is chosen from a (possibly different) set

called the range.

E.g. Let A {1, 2, 3, 4} be a set. A relation R, on 'A' can be defined as R: {(1, 2), (1, 3), (1, 1), (2, 3)}

Properties of Relations

We say a relation R on set S is

1. Reflexive: If aRa for all a in S

2. Irreflexive: If aRa is false for all a is S

3. Transitive: If aRb and bRc implies aRc

4. Symmetric: If aRb implies bRa

5. Asymmetric: If aRb implies that bRa is false

6. Anti-symmetric: If aRb and bRa implies a = b

Equivalence Relation: A relation is said to be equivalence relation if it satisfies the following

properties.

1. Reflexive

2. Symmetric

3. Transitive

An important property of equivalence relation 'R' on set 'S' is that R partitions 'S' into disjoint

nonempty equivalence classes (may be infinite)

i.e., S = S1 ∪ S2....., where for each i and j, with i ≠ j

1. Si∩ Sj= ∅

2. For each 'a' and 'b' in SjaRb is true.

3. For each 'a' in Si and 'b' in Sj, aRb is false.

The Si's are called equivalence classes.

E.g.: The relation 'R' on people defined by pRq if and only if 'p' and 'q' were born at the same

hour of the same day of some year:

The number of equivalence classes are: 24 (no. of hours) × 7 (no. of days in a week).

Closure of Relations: Suppose P is a set of properties of relations. The P-closure of a relation R is the

smallest relation R that includes all the pairs of R and possesses the properties in P.

E.g.: Let R = {(1, 2), (2, 3), (3, 1)} be a relation on set {1, 2, 3}

i. The reflexive-transitive closure of R is denoted by R* is

http://www.thegateacademy.com/

 Introduction/Preliminaries

info@thegateacademy.com ©Copyright reserved. Web:www.thegateacademy.com 3

ii. The symmetric closure of R is

{(1, 2), (2, 3), (3, 1), (2, 1), (3, 2), (1, 3)}

Term Definition

prefix of s A string obtained by removing zero or more trailing symbols

of string s; e.g., ban is a prefix of banana.

suffix of s A string formed by deleting zero or more of the leading

symbols of s; e.g., nana is a suffix of banana.

substring of s A string obtained by deleting a prefix and a suffix from s; e.g.,

nan is a substring of banana. Every prefix and every suffix of s

is a substring of s, but not every substring of s is a prefix or a

suffix of s. For every string s, both s and ∈ are prefixes,

suffixes, and substrings of s.

proper prefix, suffix, or

substring of s

Any nonempty string x that is, respectively, a prefix, suffix, or

substring of s such that s ≠ x.

subsequence of s Any string formed by deleting zero or more not necessarily

contiguous symbols from s; e.g., ‘baaa’ is a subsequence of

banana.

(1, 2), (2, 3), (3, 1), (1, 1), (2, 2), (3, 3), (1, 3), (2, 1), (3, 2)

Added by Reflexivity

Added by Transitivity

http://www.thegateacademy.com/

info@thegateacademy.com ©Copyright reserved. Web:www.thegateacademy.com 4

"Shoot for the moon. Even if you

miss, you will land among the stars."

 …Les Brown

Finite Automata

Learning Objectives
After reading this chapter, you will know:

1. Finite Automata

2. Construction of DFA from NFA (Sub Set Construction)

3. Epsilon(∈)-Closures

4. Eliminating ∈-Transitions (Construction of DFA from ∈-NFA)

Finite Automata
A finite automaton involves states and transitions among states in response to inputs. They are

useful for building several different kinds of software, including the lexical analysis component of a

complier and systems for verifying the correctness of circuits or protocols. They also serve as the

control unit in many physical systems including: vending machines, elevators, automatic traffic

signals, computer microprocessors, and network protocol stacks.

Deterministic Finite Automata

A DFA captures the basic elements of an abstract machine: it reads in a string, and depending on the

input and the way the machine was designed, it outputs either true or false. A DFA is always in one

of N states, which we usually name 0 through N-1. Each state is labeled true or false. The DFA begins

in a designated state called the start state. As the input characters are read in one at a time, the DFA

changes from one state to another in a pre-specified way. The new state is completely determined

by the current state and the character just read in. When the input is exhausted, the DFA outputs

true or false according to the label of the state it is currently in.

A Deterministic finite automaton is represented by a Quintuple (5-tuple): (Q, ∑, δ, q0, F)

Where,

Q: Finite set of states

∑: Finite set of input symbols called the alphabet.

δ: Q X ∑ ⇒ Q (δ is a transition function from Q X ∑ to Q)

q0: A start state, one of the states in Q

F: A set of final states, such that F ⊆ Q

C
H

A
P

T
E

R

1

 2

http://www.thegateacademy.com/

 Finite Automata

info@thegateacademy.com ©Copyright reserved. Web:www.thegateacademy.com 5

Induction

Suppose w is a string of the form xa; that is a is the last symbol of w, and x is the string consisting of

all but the last symbol. For example w = 1101 is broken into x = 110 and a = 1. Then

δ̂(q, w) = δ(δ̂(q, x), a)

Now, to compute δ̂(q, w) first compute δ̂(q, x)the state that the automaton is in after processing all

but the last symbol of w. Suppose this state is p; that is, δ̂(q, x) = p. Then δ̂(q, w)is what we get by

making a transition from state p on input a. That is, δ̂(q, w) = δ̂(p, a)

E.g.: Let us design a DFA to accept the language

L = {w | w has both an even number of 0's and an even number of 1's}

It should not be surprising that the job of the states of this DFA is to count both the number of 0's

and the number of 1's, but count them modulo 2. That is, the state is used to remember whether the

number of 0's seen so far is even or odd, and also to remember whether the number of 1's seen so

far is even or odd. There are thus four states, which can be given the following interpretations:

q0: Both the number of 0's seen so far and the number of 1's seen so far are even.

q1: The number of 0's seen so far is even, but the number of 1's seen so far is odd.

q2: The number of 1's seen so far is even, but the number of 0's seen so far is odd.

q3: Both the number of 0's seen so far and the number of 1's seen so far are odd.

State q0 is both the start state and the alone the accepting state. It is the start state, because before

reading any inputs, the numbers of 0's and 1's seen so far are both zero, and zero is even. It is the

only accepting state, because it describes exactly the condition for a sequence of 0's and 1's to be in

language L.

We now know almost how to specify the DFA for language L. It is,

A = ({q0, q1, q2, q3}, {0,1}, δ, q0, {q0})

Deterministic Finite Automata

Transition Diagram for the DFA

Where the transition function ‘S’ is described by the transition diagram notice that, how each input

‘0’ causes the state to cross the horizontal, dashed line. Thus, after seeing an even number of 0's we

are always above the line, in state q0 or q1 while after seeing an odd number of 0's we are always

below the line, in state q2 or q3. Likewise, every 1 causes the state to cross the vertical, dashed line.

q0 q1

0

0

0

0

1

1

1

1

Start

q3
q2

http://www.thegateacademy.com/

 Finite Automata

info@thegateacademy.com ©Copyright reserved. Web:www.thegateacademy.com 6

Thus, after seeing an even number of 1's. We are always to the left, in state q0 or q2. While after

seeing an odd number of 1's we are to the right, in state q1 or q3. These observations are an informal

proof that the four states have the interpretations attributed to them. However, one could prove the

correctness of our claims about the states formally, by a mutual induction with respect to example.

We can also represent this DFA by a transition table shown below. However, we are not just

concerned with the design of this DFA; we want to use it to illustrate the construction of δ̂ from its

transition function δ. Suppose the input is 110101. Since this string has even numbers of 0's and 1's

both, we expect it is in the language. Thus, we expect that δ̂ (q0, 110101) = q0 since q0 is the only

accepting state. Let us now verify that claim.

Transition Table for the DFA

The check involves computing δ̂ (q0, w) for each prefix w of 110101, starting at ∈ and going in

increasing size. The summary of this calculation is:

δ̂(q0, ∈) = q0.

δ̂(q0, 1) = δ(δ̂(q0, ∈), 1) = δ(q0,1) = q1

δ̂(q0, 11) = δ(δ̂(q0, 1), 1) = δ(q1,1) = q0

δ̂(q0, 110) = δ(δ̂(q0, 1), 0) = δ(q0,0) = q2

δ̂(q0, 1101) = δ(δ̂(q0, 110), 1) = δ(q2,1) = q3

δ̂(q0, 11010) = δ(δ̂(q0, 1101), 0) = δ(q3,0) = q1

δ̂(q0, 110101) = δ(δ̂(q0, 11010), 1) = δ(q1,1) = q0

Acceptance by an Automata

 A string “x” is said to be accepted by a finite automaton M = (Q, ∑, δ, q0, F) if δ (q0, x) = ρ for

some ρ in F. The language accepted by M, designated L (M), is the set {x | δ (q0, x) is in F}.

 A language is a regular set (or just regular) if it is the set accepted by some automaton.

 There are two preferred notations for describing Automata

1. Transition diagram

2. Transition table

0 1

q2 q0 q1

q1 q3 q0

q2 q0 q3

q3 q1 q2

∗ →

http://www.thegateacademy.com/

	Coverpage
	Syllabus
	Content
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Reference book

